Suites (révisions)

Si A et B sont deux parties non vides majorées de \mathbb{R} , étudier les bornes supérieures de $A \cup B$, A+B et λA pour $\lambda \in \mathbb{R}$.

Étudier la convergence de la suite de terme général $u_n = \left(1 + \frac{\alpha}{n}\right)^n$ avec $\alpha \in \mathbb{R}$. Lorsqu'il y a une limite finie ℓ , donner un équivalent de $u_n - \ell$.

3 Montrer qu'une suite d'entiers convergente est stationnaire.

Soit u une suite telle que (u_{2n}) , (u_{2n+1}) et (u_{3n}) convergent. Prouver que u converge.

Théorème de Cesáro – lemme de l'escalier

- 1. Prouver le théorème de Cesáro : si $u \in \mathbb{C}^{\mathbb{N}^*}$ telle que $u_n \longrightarrow \ell \in \mathbb{C}$, alors $v_n = \frac{u_1 + \dots + u_n}{u_n + u_n} \longrightarrow \ell$ et le résultat est toujours valable si $u \in \mathbb{R}^{\mathbb{N}^*}$ et $\ell = \pm \infty$. La réciproque est-elle vrai?
- **2.** En déduire le lemme de l'escalier : si $u_{n+1} u_n \longrightarrow \ell$ alors $\frac{u_n}{n} \longrightarrow \ell$.
- **3.** Montrer que si $u \in \mathbb{R}_+^{*\mathbb{N}}$ telle que $\frac{u_{n+1}}{u} \longrightarrow \ell$, alors $\sqrt[n]{u_n} \longrightarrow \ell$.
- **4.** Déterminer les limites des suites de terme général $\binom{2n}{n}^{\frac{1}{n}}$; $\sqrt[n]{n(n+1)(n+2)\cdots(n+n)}$; $\sqrt[n]{1\times 3\times \cdots \times (2n-1)}$; $\frac{1}{n^2}\sqrt{\frac{(3n)!}{n!}}$.

Irrationalité de e

On pose $u_n = \sum_{k=0}^{n} \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n \, n!}$. Montrer que les deux suites convergent vers une même limite : on admettra qu'elle vaut e. En déduire que e est irrationnel. On pourra remarquer que si $e=\frac{p}{q},\ u_q<\mathrm{e}< v_q...$

Movennes et suites de Schwob

- 1. Les moyennes harmonique, géométrique et arithmétique de deux réels strictement positifs a,b sont respectivement $\frac{2}{(\frac{1}{2}+1)}$, \sqrt{ab} , $\frac{a+b}{2}$. Montrer que ces nombres sont ainsi rangés dans l'ordre croissant.
- 2. Soient a et b des nombres réels strictement positifs. On définit les suites u et v par $u_0 = a$, $v_0 = b$ et si $n \in \mathbb{N}$, $u_{n+1} = \frac{u_n + v_n}{2}$ et $v_{n+1} = \sqrt{u_n v_n}$.

Montrer que ces deux suites convergent vers une même limite appelée moyenne arithméticogéométrique de a et b. On ne peut pas l'exprimer simplement avec les fonctions usuelles.

3. Soient a et b des nombres réels strictement positifs. On définit les suites u et v par $u_0 = a$ $v_0 = b$ et si $n \in \mathbb{N}$, $u_{n+1} = \frac{u_n + v_n}{2}$ et $v_{n+1} = \frac{2}{\left(\frac{1}{n_n} + \frac{1}{n_n}\right)}$

Montrer que ces deux suites convergent vers une même limite que l'on déterminera.

Soit u une suite de réels strictement positifs.

- 1. On suppose $\sqrt[n]{u_n} \longrightarrow \ell$.
 - (a) Montrer que si $\ell < 1$ alors $u_n \to 0$.
 - (b) Montrer que si $\ell > 1$ alors $u_n \to +\infty$.
 - (c) Montrer que si $\ell = 1$, on ne peut pas conclure.
- 2. Mêmes questions si $\frac{u_{n+1}}{u_{n+1}} \longrightarrow \ell$.

CCINP 43 (suite récurrente; équation fonctionnelle)

Analyse asymptotique (révisions)

- Ne pas oublier qu'on ne peut pas en général additionner ou composer avec une fonction (même continue) des équivalents. Obtenir un équivalent nul ne doit (quasiment) jamais arriver! Bien retenir aue $u \sim v$ si et seulement si u = v + o(v). Il faut connaître l'échelle de comparaison des suites usuelles.
- Pour déterminer un équivalent (pour calculer une limite par exemple) en $a \neq 0$, on fait en général un changement de variable x = a + h pour se ramener au voisinage de 0, et utiliser les équivalents
- Lorsque l'on demande un DL:
 - * La première chose à faire est de se ramener au voisinage de 0 en posant h = x a ou $h = \frac{1}{x}$. Et, bien sûr, connaître PARFAITEMENT les développements limités usuels (il y a des moyens mnémotechniques (ou logiques) pour les retenir!).
 - * Ensuite, voir si des propriétés de parité peuvent simplifier les calculs.
 - * Il est souvent difficile de savoir à quel ordre on doit développer chaque terme : prendre le temps d'y réfléchir, et se dire que plus on développe loin, plus on a des chances de faire des
 - * Attention à aller assez loin dans le développement d'une composée pour ne pas oublier de terme non négligé.
 - * Lorsque l'on a un quotient, on fait en général apparaître du $\frac{1}{1+u}$
 - * TOUJOURS mettre les termes d'un DL par ordre croissant de négligeabilité. Cela évite bien des erreurs.
- L'une des principales applications des DL est la recherche d'équivalent (et donc de limite). C'est facile, c'est le terme le plus fort (le premier) qui est l'équivalent le plus simple.
- L'autre utilisation classique est celle en géométrie, cela simplifie beaucoup les calculs d'asymptote (et de position de la courbe par rapport à celle-ci).
- Les développements asymptotiques sont en général difficiles. On retiendra que si on note f_k le k^e terme, on a alors $f_{k+1} \sim f - f_1 - \dots - f_k$.
- Si vous avez une calculatrice qui fait du calcul formel, elle sait calculer des développements limités. Sinon, aller sur http://www.xcasenligne.fr ou installer l'application xcas et utiliser l'instruction series (f(x), x=a, n) ou demander gentiment à Wolfram alpha pour obtenir un $DL_n(a)$ de f pour vérifier vos calculs.

CCINP 1 (équivalents et signe)

Classer par ordre de prédominance (avec la relation «) les suites de termes généraux

$$(\ln n)^3$$
, $\ln(n^3)$, $\frac{3^n}{n^3}$, 2^n , $e^{n/2}$, $(\ln(\ln n))^n$, $n\ln(\ln n)$, $n\ln n$.

Classer par ordre de prédominance (avec la relation ≪) les suites de termes généraux

$$\frac{1}{n^4}, \quad \frac{\ln n}{n^5}, \quad \frac{2^n}{1+3^n}, \quad 2^{-\ln(\ln n)}, \quad \frac{\ln(\ln n)}{\ln n+n}, \quad \frac{\ln n}{2^n+n^2}, \quad \frac{\tan(1/n)}{1+\cos^3(1/n)}, \quad (\cos(1/n))^{\sin(1/n)}-1.$$

- Donner un équivalent simple de $\cos\left(\pi n^2 \ln\left(1 + \frac{1}{n}\right)\right)$.
- On pose pour $n \in \mathbb{N}$, u_n l'unique solution de $\tan x = x$ sur $\left[-\frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi \right]$.
 - 1. Montrer que u_n est bien défini.
 - 2. Étudier la monotonie et la limite de (u_n) .
 - 3. Trouver un équivalent de u_n .
 - 4. Donner un développement asymptotique à deux termes de u_n en exprimant $v_n = u_n n\pi$ à l'aide d'une arctangente.
 - 5. Donner un développement asymptotique à 4 termes de u_n en réutilisant v_n .
- Déterminer un équivalent en $\frac{\pi}{4}$ de $\left(\tan 2x + \tan\left(x + \frac{\pi}{4}\right)\right)\sin^2\left(x \frac{\pi}{4}\right)$
- Déterminer un équivalent en 1 de Arccos.
- Déterminer les développements limités

 - 1. $DL_4(0) de \frac{x}{e^x 1}$ 5. $DL_4(0) de ln \frac{ln(1 + x)}{x}$ 2. $DL_4(0) de \frac{x}{tan x}$ 6. $DL_4(0) de (cos x)^{1+sin x}$ 7. $DL_4(0) de \sqrt{1 + tan x}$

- 11. $DL_2(0) de \left(\frac{\sin x}{x}\right)^{\frac{1}{\cos x-1}}$
- **3.** $DL_4(0) de (1+x+x^2)^{\frac{1}{x}}$ **8.** $DL_5(0) de \frac{x}{\sin x}$
- **4.** $DL_4(0)$ de $ln(1+x+\sqrt{1+x})$ **9.** $DL_6(0)$ de ch x sin x
- **12.** $DL_{1000}(0)$ de $ln\left(\sum_{k=0}^{999} \frac{x^k}{k!}\right)$

- Déterminer un équivalent simple en 0 de
 - 1. $\sqrt{\sin x} \sqrt{\sin x}$
- 2. $\frac{\sin x + \sin x 2x}{x(\cos x + \cot x 2)}$
- 3. $\sin x + a \tan x + b \sin^3 x$ OÙ a, b réels

- Montrer que l'application $f: \begin{bmatrix} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x e^{x^2} \end{bmatrix}$ admet une application réciproque définie sur \mathbb{R} et en donner un $DL_5(0)$.
- Déterminer le DL₆ en $+\infty$ de $\ln\left(x\tan\left(\frac{1}{x}\right)\right)$
- **(21)** Étudier les limites
 - 1. $\frac{\cos x \sqrt{\cos x}}{x^2}$ en 0 3. $x^{\frac{1}{1-x}}$ en 1 4. $(\pi 2x)\tan x$ en $\frac{\pi}{2}$
- 5. $\frac{(1+\sin x)^{\frac{1}{x}}-e^{1-\frac{x}{2}}}{(1+\tan x)^{\frac{1}{x}}-e^{\cos\sqrt{x}}} \text{ en } 0$