Suites numériques (MP2I)

Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Une suite peut être vue comme une famille $(u_n)_{n\in\mathbb{N}}\in\mathbb{K}^\mathbb{N}$ ou comme une application $n\in\mathbb{N}\mapsto u_n\in\mathbb{K}$, c'est équivalent.

On peut alors noter $n \mapsto u_n$ ou $(u_n)_{n \in \mathbb{N}}$ ou $(u_n)_n$ ou (u_n) MAIS PAS u_n !!!.

CAS DES SUITES RÉELLES

1 Limites

Définition 1 : Limite

■ Une suite $(u_n) \in \mathbb{R}^{\mathbb{N}}$ est dite **convergente** vers $\ell \in \mathbb{R}$ si et seulement si

$$\forall \, \varepsilon > 0, \ \exists \, N \in \mathbb{N}, \ \forall \, n \geqslant N, \ |u_n - \ell| \leqslant \varepsilon.$$

lacksquare On dit que $(u_n)_n \in \mathbb{R}^{\mathbb{N}}$ diverge vers $+\infty$ lorsque

$$\forall A \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \geqslant N, u_n \geqslant A$$

ou de manière équivalente

$$\forall A \geqslant 0, \exists N \in \mathbb{N}, \forall n \geqslant N, u_n \geqslant A$$

On note alors $u_n \to +\infty$.

■ On dit que $(u_n)_n \in \mathbb{R}^{\mathbb{N}}$ diverge vers $-\infty$ lorsque $-u_n \to +\infty$ soit

$$\forall B \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \geq N, u_n \leq B$$

ou de manière équivalente

$$\forall B \leq 0, \exists N \in \mathbb{N}, \forall n \geq N, u_n \leq B$$

On note alors $u_n \to -\infty$.

2 Limites et ordre

Propriété 1 : Passage des inégalités à la limite

Si $u, v \in \mathbb{R}^{\mathbb{N}}$ telles que $u \to \ell \in \mathbb{R}$ et $v \to \ell' \in \mathbb{R}$ et si à partir d'un certain rang $u_n \leqslant v_n$, alors $\ell \leqslant \ell'$. Si on suppose à partir d'un certain rang $u_n < v_n$, **l'inégalité devient large à la limite** : $\ell \leqslant \ell'$.

Démonstration

Soit $\varepsilon > 0$.

On a $N_1, N_2, N_3 \in \mathbb{N}$ tels que

- \blacksquare Si $n \geqslant N_1$, $|u_n \ell| \leqslant \frac{\varepsilon}{2}$,
- \blacksquare Si $n \geqslant N_2$, $|v_n \ell'| \leqslant \frac{\varepsilon}{2}$,
- \blacksquare Si $n \geqslant N_3$, $u_n \leqslant v_n$.

Alors si $n \geqslant \max(N_1, N_2, N_3)$, $\ell - \frac{\varepsilon}{2} \leqslant u_n \leqslant v_n \leqslant \ell' + \frac{\varepsilon}{2}$.

Ainsi, $\forall \varepsilon > 0$, $\ell - \ell' \leqslant \varepsilon$.

Donc $\ell - \ell'$ minore \mathbb{R}_+^* , donc $\ell - \ell' \leqslant \inf \mathbb{R}_+^* = 0$, d'où le résultat.

Contre-exemple pour l'inégalité stricte : si $u_n = \frac{1}{n+1}$ et $v_n = \frac{1}{n}$, alors pour tout $n \in \mathbb{N}^*$, $u_n < v_n$ et les deux suites tendent vers 0.

Propriété 2

Si $u \in \mathbb{R}^{\mathbb{N}}$ tel que $u_n \to \ell \in \overline{\mathbb{R}}$ et $a \in \mathbb{R}$, alors

- Si $\ell > a$, à partir d'un certain rang $u_n > a$.
- Si $\ell < a$, à partir d'un certain rang $u_n < a$.

Démonstration

Si $\ell = \pm \infty$, c'est la définition (quitte à prendre A = a + 1 ou B = a - 1).

Si $\ell \in \mathbb{R}$, on choisit $\varepsilon = |\ell - a|$.

- Si $\ell > a$, à partir d'un certain rang, $|u_n \ell| < \ell a$ donc $u_n > \ell (\ell a) = a$.
- Si $\ell < a$, à partir d'un certain rang, $|u_n \ell| < a \ell$ donc $u_n < \ell + (a \ell) = a$.

Théorème 1 : Limite par encadrement

- (i) Si $u, v, w \in \mathbb{R}^{\mathbb{N}}$ et $\ell \in \mathbb{R}$ tels que
 - $\mathbf{v} \to \ell$
 - $\mathbf{w} \to \ell$
 - \blacksquare aper $v_n \leqslant u_n \leqslant w_n$

alors $u \rightarrow \ell$.

- (ii) Si $u, v \in \mathbb{R}^{\mathbb{N}}$ telles que
 - $v \to +\infty$
 - \blacksquare aper $u_n \geqslant v_n$

alors $u \to +\infty$.

- (iii) Si $u, w \in \mathbb{R}^{\mathbb{N}}$ telles que
 - $\longrightarrow -\infty$
 - \blacksquare aper $u_n \leqslant w_n$

alors $u \to -\infty$.

Démonstration

(i) Soit $\varepsilon > 0$.

On a $N_1, N_2, N_3 \in \mathbb{N}$ tels que

- \blacksquare $\forall n \geqslant N_1$, $|v_n \ell| \leqslant \varepsilon$
- \blacksquare $\forall n \geqslant N_2$, $|w_n \ell| \leqslant \varepsilon$

Alors si $N = \max(N_1, N_2, N_3) \in \mathbb{N}$ et si $n \ge N$,

$$\ell - \varepsilon \leqslant v_n \leqslant u_n \leqslant w_n \leqslant \ell + \varepsilon$$

donc $\underbrace{|u_n - \ell|} \lesssim \varepsilon$.

(ii) Soit $A \in \mathbb{R}$.

On a $N_1, N_2 \in \mathbb{N}$ tels que

- $\blacksquare \quad \forall \ n \geqslant N_1, \quad \nu_n \geqslant A$
- $\blacksquare \ \forall \ n \geqslant N_3, \ u_n \geqslant v_n$

Alors si $N = \max(N_1, N_2) \in \mathbb{N}$ et si $n \ge N$, $u_n \ge A$.

(iii) $-w \to +\infty$ et apcr $-u_n \geqslant -w_n$ donc, par (ii), $-u \to +\infty$ donc $u \to -\infty$.

Opérations sur les limites

Propriété 3

Soient $u, v \in \mathbb{R}^{\mathbb{N}}$.

- (i) Si $\lambda \in \mathbb{R}$ et $u_n \to \ell \in \mathbb{R}$, alors $\lambda u_n \to \lambda \ell$.
- (ii) Si $u \rightarrow 0$ et v bornée, alors $uv \rightarrow 0$.

Démonstration

(i) Si $\lambda = 0$, c'est immédiat. Sinon, soit $\varepsilon > 0$.

On a $N \in \mathbb{N}$ tel que si $n \geqslant N$, $|u_n - \ell| \leqslant \varepsilon_0 = ...$ (à déterminer)

Alors $\underbrace{si}_{n} \underbrace{N}_{\sim} \underbrace{|\lambda u_{n} - \lambda \ell|} = |\lambda| |u_{n} - \ell| \leq |\lambda| \varepsilon_{0} = \varepsilon$ en choisissant $\varepsilon_{0} = \frac{\varepsilon}{|\lambda|} > 0$.

(ii) On a M > 0 tel que pour tout $n \in \mathbb{N}$, $|v_n| \leq M$.

Alors si $n \in \mathbb{N}$, $|u_n v_n| = |u_n| |v_n| \leqslant M |u_n| \to 0$ d'après (i), donc $u_n v_n \to 0$.

(iii) Soit $A \in \mathbb{R}$. On a $N \in \mathbb{N}$ tel que si $n \ge N$, $u_n \ge A_0 = ...$ (à déterminer)

On a $m \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}$, $v_n \geqslant m$.

Alors si $n \ge N$, $u_n + v_n \ge A_0 + m = A$ en prenant $A_0 = A - m \in \mathbb{R}$.

Propriété 4 : Limite de somme et produit

Si $u \to \ell_1 \in \overline{\mathbb{R}}$ et $v \to \ell_2 \in \overline{\mathbb{R}}$, $\lambda \in \mathbb{R}$, alors lorsque ces opérations sont bien définies,

 $u+v \rightarrow \ell_1 + \ell_2$

 $\blacksquare uv \to \ell_1\ell_2$

Remarque

R1 – Dans les cas douteux, il peut se passer tout et n'importe quoi. Par exemple, pour $0 \times (+\infty)$:

 $=\frac{1}{n} \times n^2 \to +\infty$

 $\blacksquare \quad \frac{\alpha}{n} \times n \to \alpha$

 \blacksquare $\frac{-1}{n} \times n^2 \to -\infty$

Démonstration

- Cas fini
 - $\star~$ Si $u_n\to\ell_1\in\mathbb{R}$ et $v_n\to\ell_2\in\mathbb{R}$, alors $u_n+v_n\to\ell_1+\ell_2$:

Soit $\varepsilon > 0$. On a $N_1, N_2 \in \mathbb{N}$ tel que si $n \ge N_1$, $|u_n - \ell_1| \le \varepsilon_0 = \frac{\varepsilon}{2}$ et si $n \ge N_2$, $|1_n - \ell_1| \le \varepsilon_1 = \frac{\varepsilon}{2}$,

Alors si $N = \max(N_1, N_2) \in \mathbb{N}$ et si $n \geqslant N$,

$$|(u_n+v_n)-(\ell_1+\ell_2)| \underset{|\mathbb{T}}{\leqslant} |u_n-\ell_1|+|v_n-\ell_2| \leqslant \varepsilon_0+\varepsilon_1=\varepsilon$$

 \star Si $u_n \to \ell_1 \in \mathbb{R}$ et $v_n \to \ell_2 \in \mathbb{R}$, alors $u_n v_n \to \ell_1 \ell_2$:

$$|u_nv_n - \ell_1\ell_2| = |(u_n - \ell_1)v_n + \ell_1(v_n - \ell_2)|$$

$$\leqslant \underbrace{|u_n - \ell_1|}_{\longrightarrow 0} \underbrace{|v_n|}_{\longrightarrow 0} + \underbrace{|v_n - \ell_2|}_{\longrightarrow 0} \underbrace{|\ell_1|}_{\longrightarrow 0} \longrightarrow 0$$

en utilisant la somme des limites. Donc $u_n v_n \rightarrow \ell_1 \ell_2$.

■ Cas infini

- \star Si $u_n \to \ell \in \mathbb{R} \cup \{+\infty\}$ et $v_n \to +\infty$, alors $u_n + v_n \to +\infty$: u est minorée et $v \to +\infty$.
- \star Si $u_n \to \ell \in \mathbb{R} \cup \{-\infty\}$ et $v_n \to -\infty$, alors $u_n + v_n \to -\infty$: $-u \to -\ell \in \mathbb{R} \cup \{+\infty\} \text{ et } -v \to +\infty, \text{ donc } -u -v \to +\infty.$
- \star Si $u_n \to \ell \in \mathbb{R}_+^* \cup \{+\infty\}$ et $v_n \to +\infty$, alors $u_n v_n \to +\infty$:

Soit m > 0 tel que $m < \ell$ (par exemple $\frac{\ell}{2}$ si ℓ est finie, 1 sinon).

On a $N_1 \in \mathbb{N}$ tels que si $n \geqslant N_1$, $u_n \geqslant m > 0$.

Soit $A \geqslant 0$. On a $N_2 \in \mathbb{N}$ tel que si $n \geqslant N_2$, $v_n \geqslant A_0 = \frac{A}{m}$

Alors si $n \geqslant \max(N_1, N_2)$, $u_n v_n \geqslant m \frac{A}{m} = A$.

- \star Si $u_n \to \ell \in \mathbb{R}_-^* \cup \{-\infty\}$ et $v_n \to -\infty$, alors $u_n v_n \to +\infty$: $-u \to -\ell \in \mathbb{R}_+^* \cup \{+\infty\} \text{ et } -v \to +\infty, \text{ donc } uv = (-u)(-v) \to +\infty.$
- \star Si $u_n \to \ell \in \mathbb{R}_+^* \cup \{-\infty\}$ et $v_n \to +\infty$, alors $u_n v_n \to -\infty$: $-u \to -\ell \in \mathbb{R}_+^* \cup \{+\infty\} \text{ et } v \to +\infty, \text{ donc } -uv = (-u)v \to +\infty.$
- \star Si $u_n \to \ell \in \mathbb{R}_+^* \cup \{+\infty\}$ et $v_n \to -\infty$, alors $u_n v_n \to -\infty$: $u \to \ell \in \mathbb{R}_+^* \cup \{+\infty\} \text{ et } -v \to +\infty, \text{ donc } -uv = u(-v) \to +\infty.$

Propriété 5 : Limite d'inverse

- Si $u_n \to \ell \in \overline{\mathbb{R}}^*$, alors à partir d'un certain rang, $u_n \neq 0$ et $\frac{1}{u_n} \longrightarrow \begin{cases} \frac{1}{\ell} \\ 0 \end{cases}$
- Si $u_n \to 0$ et à partir d'un certain rang $u_n > 0$, alors $\frac{1}{u_n} \to +\infty$.
- Si $u_n \to 0$ et à partir d'un certain rang $u_n < 0$, alors $\frac{1}{u_n} \to -\infty$.

Démonstration

■ Si $u_n \to \ell \in \mathbb{R}^*$, $|u_n| \to |\ell| > \frac{|\ell|}{2} > 0$ donc on a $N \in \mathbb{N}$ tell que si $n \geqslant N$, $|u_n| > \frac{|\ell|}{2} > 0$ et en particulier $u_n \neq 0$. Si $n \geqslant N$,

$$\left|\frac{1}{u_n} - \frac{1}{\ell}\right| = \frac{|u_n - \ell|}{|u_n||\ell|} \leqslant \frac{2}{|\ell|^2} |u_n - \ell| \longrightarrow 0$$

donc $\frac{1}{u} \to \frac{1}{\ell}$.

- Si $u_n \to +\infty$ et $\varepsilon > 0$, on a $N \in \mathbb{N}$ tel que si $n \geqslant N$, $u_n \geqslant \frac{1}{\varepsilon} > 0$. Alors $\left| \frac{1}{u_n} \right| = \frac{1}{u_n} \leqslant \frac{1}{\underline{1}} = \varepsilon$.
- \blacksquare Si $u_n \to -\infty$, $-u \to +\infty$ et $\frac{1}{u} = -\frac{1}{-u} \to 0$.
- Si $u_n \to 0^+$ et A > 0, on a $N \in \mathbb{N}$ tel que si $n \geqslant N$, $|u_n| = u_n \leqslant \frac{1}{A}$ donc $\frac{1}{u_n} \geqslant A$.
- Si $u_n \to 0^-$, $-u \to 0^+$ et $\frac{1}{u} = -\frac{1}{-u} \to -\infty$.

Propriété 6 : Convergence des suites géométriques réelles

Soit $a \in \mathbb{R}$.

- $Si \ q = 1, \ q^n \to 1.$
- Si |q| < 1, $q^n \to 0$. Si q > 1, $q^n \to +\infty$.

■ Si $q \le -1$, (q^n) n'a pas de limite. Si q < -1, la suite n'est ni majorée, ni minorée.

Démonstration

- Si q = 1, ok.
- Si |q| < 1, $|q^n| = |q|^n = e^{n\ln|q|} \to 0$.
- $\blacksquare \text{ Si } q > 1, \ q^n = e^{n \ln q} \to +\infty.$
- Si q < -1, $q^{2k} \to +\infty$ et $q^{2k+1} \to -\infty$ donc (q^n) n'est ni majorée, ni minorée. En particulier, elle n'a pas de limite.

Démonstration

- Si ℓ < 1, soit q tell que ℓ < q < 1. À partir d'un certain rang n_0 , on a $\frac{u_{n+1}}{u_n} \leqslant q$ donc $u_{n+1} \leqslant qu_n$. Alors, par récurrence, si $n \geqslant n_0$, $0 < u_n \leqslant q^{n-n_0}u_{n_0} \longrightarrow 0$. Donc $u \to 0$.
- Si $\ell > 1$, soit q tel que $1 < q < \ell$. À partir d'un certain rang n_0 , on a $\frac{u_{n+1}}{u_n} \geqslant q$ donc $u_{n+1} \geqslant qu_n$. Alors, par récurrence, si $n \geqslant n_0$, $u_n \geqslant q^{n-n_0}u_{n_0} \longrightarrow +\infty$. Donc $u \to +\infty$.
- $\blacksquare \frac{n+1}{n} \to 1 \text{ et } n \to +\infty. \frac{\frac{1}{n+1}}{\frac{1}{n}} \to 1 \text{ et } \frac{1}{n} \to 0.$

LES SUITES MONOTONES

Théorème 2: Théorème de la limite monotone

Soit $u \in \mathbb{R}^{\mathbb{N}}$ une suite croissante (respectivement décroissante).

- (i) Si u est majorée (respectivement minorée) alors u converge vers $\sup_{n\in\mathbb{N}}u_n$ (respectivement $\inf_{n\in\mathbb{N}}u_n$).
- (ii) Si u n'est pas majorée (resp. minorée), alors $u \to +\infty$ (respectivement $u \to -\infty$).

Démonstration

Soit $E = \{u_n, n \in \mathbb{N}\} \subset \mathbb{R}$. Alors $E \neq \emptyset$. On suppose u croissante (si u est décroissante, il suffit d'appliquer les résultats à -u qui est croissante.)

(i) Si u est majorée, $\ell = \sup u_n = \sup E$ existe. Soit $\varepsilon > 0$.

Par caractérisation de la borne supérieure, on a $N \in \mathbb{N}$ tel que $\ell - \varepsilon < u_N$ ($\ell - \varepsilon$ ne majore pas u). Alors par croissance de u,

$$\forall n \geqslant N, \ \ell - \varepsilon \leqslant u_N \leqslant u_n \leqslant \sup u_n = \ell \leqslant \ell + \varepsilon$$

donc $\forall n \geqslant N$, $|u_n - \ell| \leqslant \varepsilon$.

Finalement, $u_n \rightarrow \ell$.

(ii) Si u non majorée, soit $A \in \mathbb{R}$. A ne majore par u donc on a $N \in \mathbb{N}$ tel que $u_N \geqslant A$. Par croissance de u, $\forall n \geqslant N$, $u_n \geqslant A$ donc $u \to +\infty$.

Corollaire 1

Si u est une suite croissante majorée (respectivement décroissante minorée), alors $\forall n \in \mathbb{N}, \ u_n \leqslant \lim u$ (respectivement $u_n \geqslant \lim u$).

De plus, les inégalités sont strictes en cas de stricte monotonie.

Démonstration

 $\lim u = \sup u$ (respectivement $\inf u$.) Si u croit strictement, pour tout $n \in \mathbb{N}$, $u_n < u_{n+1} \leqslant \lim u$.

2 Suites adjacentes

Définition 2: Suites adjacentes

Soient $u, v \in \mathbb{R}^{\mathbb{N}}$. u et v sont adjacentes si

- I'une est croissante,
- l'autre est décroissante,
- $v-u\rightarrow 0.$

Exemple

E1-
$$S_n = \sum_{k=1}^n \frac{1}{k^2} = 1 + \frac{1}{4} + \dots + \frac{1}{n^2}$$
 et $S'_n = S_n + \frac{1}{n}$.

E2 – Si $x \in \mathbb{R}$, les suites d'approximation décimale par défaut et par excès $(d_n(x))$ et $(D_n(x))$ sont adjacentes.

Propriété 7

Si u,v sont adjacentes avec u croissante, alors u et v convergent vers une même limite $\ell \in \mathbb{R}$ et $\forall n \in \mathbb{N}, \ u_n \leqslant \ell \leqslant v_n$, les inégalités étant strictes si u et v ont strictement monotones.

Démonstration

Soit $w_n = v_n - u_n$. Alors par opérations, w est décroissante et $w_n \to 0$ donc pour tout $n \in \mathbb{N}$, $w_n \geqslant 0$, c'est-à-dire $n \leq v_n$.

Ainsi, pour tout $n \in \mathbb{N}$, $u_0 \le u_n \le v_0$ donc u est croissante majorée par v_0 et v est décroissante minorée par u_0 et donc ces suites convergent. Comme $v_n - u_n \to 0$, les limites sont égales et l'encadrement découle des propriétés des suites monotones.

Remarque

R2 - On a alors pour tout n, $|u_n - \ell| \le |v_n - u_n| = v_n - u_n$ ce qui donne des information intéressante sur la **vitesse de convergence**: plus v - u converge rapidement vers 0, plus u converge rapidement vers ℓ . Cela permet aussi de connaître un rang à partir duquel u_n est une approximation de ℓ à une précision donnée.

Exemple

E3 – Approximations décimales :

$$|d_n(x) - x| \le D_n(x) - d_n(x) = 10^{-n}$$

Convergence très rapide (au moins exponentielle).

Si on veut n décimales, on calcule $d_n(x)$ (évidemment!).

E4 – $S_n = \sum_{k=1}^n \frac{1}{k^2} \to \sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$. Vu le calcul précédent, pour tout n, $\left| S_n - \frac{\pi^2}{6} \right| \leqslant \frac{1}{n}$. La converge est (au moins) en $\frac{1}{n}$ donc plutôt lente.

Si on veut n décimales, on calcule... S_{10^n} !

E5 – **Dichotomie** : On construit des segments emboîtes en divisant leur taille par 2 à chaque étape : $I_0 = [a,b]$, pour tout n, $I_{n+1} \subset I_n$ avec $\ell(I_{n+1}) = \frac{\ell(I_n)}{2}$, avec $I_n = [a_n,b_n]$.

Alors $(a_n),(b_n)$ sont adjacentes, $\bigcap_{n\in\mathbb{N}}I_n=\{\ell\}$ et la convergence de (a_n) et (b_n) vers ℓ est au moins en $\frac{b-a}{2^n}$ donc très rapide.

CRITÈRES SÉQUENTIELS

Caractérisation séquentielle des bornes inférieure et supérieure

Propriété 8 : Caractérisation séquentielle des bornes inférieure et supérieure

Soit A partie non vide \mathbb{R} , $\alpha, \beta \in \mathbb{R}$.

$$\alpha = \sup A \Longleftrightarrow \begin{cases} \forall x \in A, & x \leq \alpha \\ \exists (a_n)_n \in A^{\mathbb{N}}, & a_n \to \alpha \end{cases}$$

$$\beta = \inf A \Longleftrightarrow \left\{ \begin{array}{l} \forall \ x \in A, \ \ x \geqslant \beta \\ \\ \exists \ (a_n)_n \in A^{\mathbb{N}}, \ \ a_n \to \beta \end{array} \right.$$

Démonstration

Voir chapitre précédent.

2 Caractérisation séquentielle de la densité

Définition 3 : Partie dense dans ${\mathbb R}$

Une partie A non vide de $\mathbb R$ est dite **dense** dans $\mathbb R$ lorsque pour tout $x, y \in \mathbb R$ tel que x < y, $A \cap]x, y \not \in \emptyset$.

Remarque

R3 – La définition sera étendue plus tard dans l'année.

Propriété 9 : Caractérisation séquentielle de la densité

Soit A une partie de \mathbb{R} . A est dense dans \mathbb{R} si et seulement si tout réel est limite d'une suite d'éléments de A.

Démonstration

- (⇒) : Si $x \in \mathbb{R}$, pour tout $n \in \mathbb{N}^*$, on a $a_n \in A$ tell que $x \frac{1}{n} \leqslant a_n \leqslant x + \frac{1}{n}$ car A est dense dans \mathbb{R} . Alors, par encadrement, $a_n \to x$.
- (\Leftarrow) : Si tout réel est limite d'une suite d'éléments de A, et si x < y. Soit $(a_n) \in A^{\mathbb{N}}$ telle que $a_n \to \frac{x+y}{2}$. Avec $\varepsilon = \frac{y-x}{2}$, on a un rang à partir duquel

$$x = \frac{x+y}{2} - \frac{y-x}{2} < a_n < \frac{x+y}{2} + \frac{y-x}{2} = y$$

avec $a_n \in A$. Donc A est dense dans \mathbb{R} .

Corollaire 2 : Cas des réels et des décimaux

- (i) Tout réel est limite d'une suite de rationnels et d'une suite d'irrationnels.
- (ii) \mathbb{D} est dense dans \mathbb{R} .

Démonstration

(ii): il suffit de prendre une suite d'approximations décimales.

EXTENSION AUX SUITES COMPLEXES

Notation 1 : Parties réelle et imaginaire, conjugué, module d'une suite complexe

Soit $z = (z_n) \in \mathbb{C}^{\mathbb{N}}$. On note $\mathfrak{Re}(z) = (\mathfrak{Re}(z_n)) \in \mathbb{R}^{\mathbb{N}}$, $\mathfrak{Im}(z) = (\mathfrak{Im}(z_n)) \in \mathbb{R}^{\mathbb{N}}$, $\overline{z} = (\overline{z_n}) \in \mathbb{R}^{\mathbb{N}}$, $|z| = (|z_n|) \in \mathbb{R}^{\mathbb{N}}$.

Définition 4 : Convergence de suite complexe

Une suite $(z_n) \in \mathbb{C}$ est dite **convergente** vers $\ell \in \mathbb{C}$ si et seulement si $|z_n - \ell| \to 0$, c'est-à-dire

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geqslant N, |z_n - \ell| \leqslant \varepsilon.$$

Remarque

R4 - Pas de limite infinie dans \mathbb{C} . On peut au mieux avoir $|z_n| \to +\infty$.

Propriété 10

Soit $(z_n) \in \mathbb{C}^n$ et $\ell \in \mathbb{C}$.

$$z_n \to \ell \iff \Re e \, z_n \to \Re e \, \ell \text{ et } \Im \mathfrak{m} \, z_n \to \Im \mathfrak{m} \, \ell$$

Démonstration

- (i) $\blacksquare |\Re z_n \Re \ell| = |\Re (z_n \ell)| \leq |z_n \ell|$

 $|z_n - \ell| = \sqrt{(\mathfrak{Re}\,z_n - \mathfrak{Re}\,\ell)^2 + (\mathfrak{Im}\,z_n - \mathfrak{Im}\,\ell)^2}$

(ii) $||z_n| - |\ell|| \le |z_n - \ell|$

Définition 5

Une suite $(z_n) \in \mathbb{C}^{\mathbb{N}}$ est dite **bornée** si et seulement s'il existe $M \in \mathbb{R}^+$ tel que $\forall n \in \mathbb{N}, |z_n| \leq M$.

Démonstration

Si $z_n \to \ell$, alors $|z_n| \to |\ell|$ donc la suite réelle $(|z_n|)$ est bornée donc par définition (z_n) l'est aussi.

Propriété 11 : Suites géométriques complexes

Soit $q \in \mathbb{C}$.

- $Si q = 1, q^n \to 1.$
- $Si |q| < 1, q^n \to 0.$
- Si|q| > 1, (q^n) n'est pas bornée et donc diverge.

■ Si |q| = 1 et $q \neq 1$, (q^n) diverge en étant bornée.

Démonstration

- Si q = 1: Ok
- Si |q| < 1, $|q^n 0| = |q|^n \to 0$ donc $q^n \to 0$. Si |q| > 1, $|q^n| = |q|^n \to +\infty$ donc (q^n) est non bornée et diverge.
- Si |q|=1 et $q \neq 1$, on a $\theta \in]0,2\pi[$ tel que $q=\mathrm{e}^{\mathrm{i}\theta}.$ Alors $|q^n|=1$ donc la suite est bornée (on reste sur le cercle trigonométrique) et si $q^n = \mathrm{e}^{\mathrm{i} n \theta} \to \ell$, alors $|q^n| = 1 \to |\ell| = 1$ par unicité de la limite. En particulier $\ell \neq 0$ et $q = \frac{q^{n+1}}{q^n} \to \frac{\ell}{\ell} = 1 \text{ ce qui est contradictoire}.$

Remarque

R5 – En particulier, si $\theta \notin \pi \mathbb{Z}$, les suites $(\cos(n\theta))_n$ et $(\sin(n\theta))_n$ divergent. En effet, si l'une convergeait, à l'aide de $\cos((n+1)\theta)$ ou $\sin((n+1)\theta)$, on obtient que l'autre converge aussi et alors $\left(\mathrm{e}^{\mathrm{i}n\theta}\right)$ convergerait également.

Démonstration

Si (z_n) est bornée, alors soit $(x_n) = (\Re \epsilon z_n)$ et $(y_n) = (\Im \pi z_n)$. Ces deux suites sont bornées. Par le théorème réel, on peut extraire une suite convergente $(x_{\varphi(n)})$ de x. Puis $(y_{\varphi(n)})$ est bornée en tant que suite extraite d'une suite bornée, on peut donc en extraire une suite convergente : $(y_{\varphi \circ \psi(n)})$. Alors par extraction, $(x_{\varphi \circ \psi(n)})$ est également convergente et donc $(z_{\varphi \circ \psi(n)})$ converge.

Suites récurrentes

Le but est d'étudier les suites récurrentes réelles d'ordre 1 générales : $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n)$ avec $f: D \to \mathbb{R}$.

Propriété 12

Si $u_n \to \ell \in D$ et si f est continue en ℓ , alors $f(\ell) = \ell$ (ℓ est un point fixe de f).

Démonstration

Unicité de la limite avec $u_{n+1} \to \ell$ et $f(u_n) \to f(\ell)$.

Méthode 1 : Étude générique de suite récurrente

- On commence en général par faire un dessin, et par voir quelles propriétés vérifient directement la suite.
- Parfois, les choses se voient clairement sur la formule de récurrence : ne pas se précipiter sur la méthode
- Ensuite, les premières choses à cibler sont les **intervalles stables par** f: I tel que $f(I) \subset I$. Alors, par récurrence, si à partir d'un certain rang $u_{n_0} \in I$, la suite est bien définie et $\forall n \geqslant n_0, u_n \in I$. Vu la propriété précédente, bien souvent, l'une des bornes de l'intervalle sera un point fixe de f. (Il faut donc chercher les points fixes!)
 - On pose en général g(x) = f(x) x: les points fixes de f sont les zéros de g. Il faut aussi s'assurer que la suite est bien définie!
- \blacksquare Ensuite, on s'intéresse à la monotonie de f.
 - * La monotonie de la suite peut se trouver directement en remarquant que $u_{n+1} u_n = f(u_n) u_n = g(u_n)$: il est donc primordial de connaître le signe de g.

 \star Si f est **croissante** sur I stable par f et $u_{n_0} \in I$, alors $(u_n)_{n \geqslant n_0}$ est **monotone**. (Si $u_{n_0} \leqslant u_{n_0+1}$, ie $g(u_{n_0}) \geqslant 0$, pour tout $n \in \mathbb{N}$,

$$u_n = f^{n-n_0}(u_{n_0}) \leqslant f^{n-n_0}(u_{n_0+1}) = u_{n+1}$$

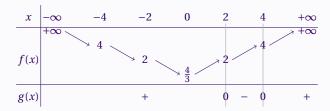
et si $u_{n_0} \geqslant u_{n_0+1}$, ie $g(u_{n_0}) \leqslant 0$, pour tout $n \in \mathbb{N}$,

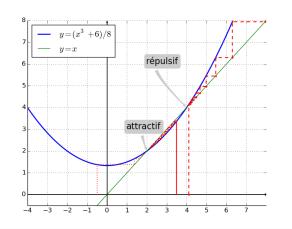
$$u_n = f^{n-n_0}(u_{n_0}) \ge f^{n-n_0}(u_{n_0+1}) = u_{n+1}.$$

* Si f est **décroissante** sur I stable par f et $u_{n_0} \in I$, alors $(u_{2n})_{n\geqslant \frac{n_0}{2}}$ et $(u_{2n+1})_{n\geqslant \frac{n_0-1}{2}}$ sont **monotones**, de monotonie contraire. Elles sont en fait solution de $v_{n+1} = f \circ f(v_n)$ avec $f \circ f$ croissante. Lorsqu'elles convergent vers une même limite (c'est-à-dire qu'elles sont adjacentes), alors (u_n) converge vers cette limite. Notons que les points fixes de f sont des points fixes de $f \circ f$ (mais la réciproque est fausse en général.)

Exercice 1

Étude de (u_n) telle que $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{u_n^2 + 8}{6}$. On pose donc $f(x) = \frac{x^2 + 8}{6}$ et $g(x) = f(x) - x = \frac{x^2 - 6x + 8}{6} = \frac{(x - 2)(x - 4)}{6}$. En particulier, les points fixes de f sont 2 et 4. f est paire, continue, dérivable sur \mathbb{R} et $f': x \mapsto \frac{x}{3}$. Les suites (u_n) sont toujours définies sans problème.





Intervalles stables intéressants : [0,2[,]2,4[et $]4,+\infty[$.

■ $(\exists u_0 \in]-2,2[$, $u_1 \in [0,2[$ stable par f, donc $\forall n \geqslant 1$, $u_n \in [0,2[$. $\exists i n \geqslant 1, u_{n+1}-u_n=g(u_n)>0$, donc $(u_n)_{n\geqslant 1}$ est strictement croissante. Remarquons qu'ici, on a même $(u_n)_{n\geqslant 0}$ strictement croissante.

Comme (u_n) est croissante et majorée par 2, elle converge vers $\ell \in [0,2]$. Comme f est continue, ℓ est un point fixe de f, donc $\ell = 2$.

 $u_n \rightarrow 2$ en croissant strictement.

- $\begin{array}{l} \blacksquare & \text{$\left(\text{Si } u_0 \in \left] 4, -2[\cup]2, 4[\right)$ } u_1 \in \left] 2, 4[\text{ stable par } f, \text{ donc } \forall \, n \geqslant 1, \,\, u_n \in \left] 2, 4[. \\ \text{Si } n \geqslant 1, \,\, u_{n+1} u_n = g(u_n) < 0, \,\, \text{donc } (u_n)_{n\geqslant 1} \text{ est strictement décroissante.} \\ \text{Comme } (u_n)_{n\geqslant 1} \text{ est décroissante et minorée par } 2, \,\, \text{elle converge vers } \ell \in [2,4]. \,\, \text{Comme } f \text{ est continue, } \ell \text{ est un point fixe de } f. \,\, \text{Comme on a } \ell \leqslant u_1 < 4, \,\, \ell = 2. \\ \hline u_n \to 2 \text{ en décroissant strictement au moins à partir du rang } 1. \end{array}$
- $\left[\text{Si } u_0 \in]-\infty, -4[\cup]4, +\infty[, \right] u_1 \in]4, +\infty[\text{ stable par } f, \text{ donc } \forall \ n\geqslant 1, \ u_n \in]4, +\infty[.$ Si $n\geqslant 1, \ u_{n+1}-u_n=g(u_n)>0$, donc $(u_n)_{n\geqslant 1}$ est strictement croissante. Remarquons qu'ici, on a même $(u_n)_{n\geqslant 0}$ strictement croissante.

Si $u_n \to \ell \in \mathbb{R}$, comme f est continue, ℓ est un point fixe de f. Comme $\ell \in [4, +\infty[$, $\ell = 4$. Or $4 < u_1 \le \ell$ ce qui est contradictoire.

Comme $(u_n)_{n\geqslant 1}$ est croissante et non convergente, $u_n\to +\infty$.

 $(u_n \to +\infty \text{ en croissant strictement.})$

- Si $u_0 \in \{-2, 2\}, \forall n \ge 1, u_n = 2.$
- Si $u_0 \in \{-4,4\}, \forall n \geqslant 1, u_n = 4.$

2 Cas d'une fonction contractante

Définition 6: Fonction contractante

Une fonction f est dite **contractante** sur un intervalle I si et seulement si on a k < 1 tel que $\forall x, x' \in I$, $|f(x) - f(x')| \leq k |x - x'|$.

Cela se traduit graphiquement par le fait que les pentes des cordes ne sont « pas trop élevées ».

Méthode 2: Cas d'une fonction contractante

Cela est intéressant si I est stable par f. Si c'est le cas, si $\ell \in I$ point fixe de f (on peut montrer qu'il existe et est nécessairement unique), si $u_0 \in I$ stable par f, alors $\forall n \in \mathbb{N}, u_n \in I$ et $\forall n \in \mathbb{N}, u_n \in I$

$$|u_n - \ell| = |f(u_{n-1}) - f(\ell)| \le k|u_{n-1} - \ell| \le \dots \le k^n |u_0 - \ell| \to 0$$

Donc directement $u_n \rightarrow \ell$, on a même une convergence exponentielle.

On peut parfois conclure rapidement grâce à l'inégalité des accroissements finis :

Théorème 3: Inégalité des accroissements finis

Soit $f: I \to \mathbb{R}$. On suppose que

H1 f est continue sur I

H2 f est dérivable sur Î

H3 On a $k \in \mathbb{R}^+$ tel que $\forall x \in I$, $|f'(t)| \leq k$.

Alors f est k-lipschitzienne:

$$\forall x, x' \in [a, b], |f(x) - f(x')| \le k|x - x'|.$$

Démonstration

Admis provisoirement.

Remarque

R6 – On peut démontrer que si ℓ est un point fixe de f de classe \mathscr{C}^1 , alors

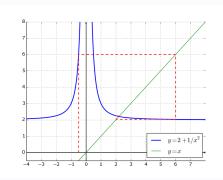
- si $|f'(\ell)| < 1$, le point fixe est **attractif**, en particulier si $f'(\ell) = 0$ (point **superattractif**), la convergence est quadratique, comme pour la méthode de Newton,
- si $|f'(\ell)| > 1$, le point fixe est **répulsif**,
- si $|f'(\ell)| = 1$, c'est le cas douteux. Tout peut arriver.

Exemple

$$u_0 \in \mathbb{R}^* \text{ et } \forall n \in \mathbb{N}, \quad u_{n+1} = 2 + \frac{1}{u_n^2}.$$

Par récurrence, (u_n) est définie et $u_n > 2$ à partir du rang 1. $f: x \mapsto 2 + \frac{1}{x^2}$ est définie sur \mathbb{R}^* , paire, décroissante sur \mathbb{R}^*_+ .

 $[2,+\infty[$ est stable par f et comme $u_1 \in [2,+\infty[$, $\forall n \ge 1, \ u_n \in [2,+\infty[$.



 $f(x) = x \iff x^3 - 2x^2 - 1 = 0$ et une rapide étude de fonction montre, à l'aide du théorème de la bijection, qu'il y a un unique point fixe $\alpha \in [2, +\infty[$ pour f.

f est continue sur $[2, +\infty[$, dérivable sur $]2, +\infty[$ et si x > 2, $f'(x) \le \frac{1}{4}(<1)$.

D'après l'inégalité des accroissements finis,

$$\forall \, x,x' \in [2,+\infty[, \quad \left| f(x) - f(x') \right| \leqslant \frac{1}{4} \left| x - x' \right|.$$

On en déduit que $\forall n \in \mathbb{N}^*$, $|u_n - \alpha| \leqslant \left(\frac{1}{4}\right)^{n-1} |u_1 - \alpha|$ donc $u_n \to \alpha$ (plutôt rapidement.)

RELATIONS DE COMPARAISON

Définition

Définition 7: Relations de comparaison

Si $u, v \in \mathbb{K}^{\mathbb{N}}$ et si v_n n'est jamais nul à partir d'un certain rang, on dit que

- **u** est **dominée** par v et on note $u = \mathcal{O}(v)$ lorsque $\left(\frac{u_n}{v_n}\right)_n$ est bornée.
- u est **négligeable** devant v et on note u = o(v) ou $u_n \ll v_n$ lorsque $\frac{u_n}{v_n} \to 0$.
- u est **équivalente** à v et on note $u \sim v$ lorsque $\frac{u_n}{v_n} \to 1$, soit encore u v = o(v), c'est-à-dire u = v + o(v).

Remarque

R7 – La définition se généralise au cas où $(v_n)_n$ est quelconque en écrivant $u_n = v_n \times w_n$ avec $(w_n)_n$ bornée (respectivement $\rightarrow 0,1$).

R8 - \bigwedge u = o(v) et u = O(v) traduisent une **appartenance**.

E6 -
$$n = o(n^3)$$
 et $n^2 = o(n^3)$ mais $n \neq n^2$!

R9 – $u = \mathcal{O}(v)$ signifie qu'il existe $K \in \mathbb{R}$ et un rang à partir duquel $|u_n| \leq K|v_n|$. u = o(v) signifie que pour tout $\varepsilon > 0$, il existe un rang à partir duquel $|u_n| \le \varepsilon |v_n|$. R 10 - Il n'y a pas unicité de l'équivalent d'une suite. En général, on choisit le plus simple.

R11 – Cela ne donne que des informations asymptotiques sur les suites : au voisinage de $+\infty$, donc à partir d'un certain rang.

Propriété 13 : Croissances comparées des suites usuelles

Si
$$\alpha > 0$$
, $\beta > 0$, $q > 1$,

$$\ln^{\beta} n \ll n^{\alpha} \ll q^n \ll n! \ll n^n$$

$$\frac{1}{n^n} \ll \frac{1}{n!} \ll \frac{1}{q^n} \ll \frac{1}{n^\alpha} \ll \frac{1}{\ln^\beta n}.$$

Exemple

 $\ln n \ll n \ll n \ln n \ll n^2.$

Propriété 14

$$u \sim v \Longleftrightarrow u = v + o(v)$$

Démonstration

$$\frac{u_n}{v_n} \to 1 \Longleftrightarrow \frac{u_n - v_n}{v_n} \to 0.$$

2 Propriétés

Propriété 15 : Propriétés de o et O

Soient $u, v, w, a, b \in \mathbb{K}^{\mathbb{N}}$, v, w, b ne s'annulant pas à partir d'un certain rang, et $\alpha, \beta \in \mathbb{K}$.

- (i) Si $\alpha \neq 0$, $u = o(\alpha v) \Longrightarrow u = o(v)$ of $u = O(\alpha v) \Longrightarrow u = O(v)$.
- (ii) $u = o(1) \iff u \to 0 \text{ et } u = O(1) \iff u \text{ born\'ee.}$
- (iii) Si u = o(v) ou $u \sim v$, alors u = O(v) et la réciproque est fausse.
- (iv) Transitivité

$$u = o(v)$$
 et $v = o(w) \Longrightarrow u = o(w)$

$$u = \mathcal{O}(v)$$
 et $v = \mathcal{O}(w) \Longrightarrow u = \mathcal{O}(w)$

(v) Combinaison linéaire

$$u = o(w)$$
 et $v = o(w) \Longrightarrow \alpha u + \beta v = o(w)$

$$u = \mathcal{O}(w)$$
 et $v = \mathcal{O}(w) \Longrightarrow \alpha u + \beta v = \mathcal{O}(w)$

(vi) Produit

$$u = o(v)$$
 et $a = o(b) \Longrightarrow ua = o(vb)$

$$u = \mathcal{O}(v)$$
 et $a = \mathcal{O}(b) \Longrightarrow ua = \mathcal{O}(vb)$

Démonstration

Toutes ces propriétés se démontrent facilement en passant par le quotient qui doit être bornée/→0.

Propriété 16 : Propriétés de ~

Soient $u, v, w, a, b \in \mathbb{K}^{\mathbb{N}}$, v, w, b ne s'annulant pas à partir d'un certain rang.

- (i) ~ est une relation d'équivalence.
- (ii) Si $u \sim v$ et $v \to \ell \in \overline{\mathbb{R}}$ ou \mathbb{C} , alors $u \to \ell$.
- (iii) $u \to \ell \not\models 0 \iff u \sim \ell$.
- (iv) Si $u \sim v$, alors à partir d'un certain rang, u_n et v_n sont de même signe.
- (v) Si $u \sim v$ et $a \sim b$, alors $ua \sim vb$ et $\frac{u}{a} \sim \frac{v}{b}$
- (vi) Si $u \sim v$ et $\alpha \in \mathbb{R}$ fixé, $(u_n > 0$ et $v_n > 0$ si $\alpha \notin \mathbb{N}$, non nuls si $\alpha \in \mathbb{Z}^-$), $u^{\alpha} \sim v^{\alpha}$.
- (vii) Si $u_n \sim v_n$ et φ extractrice, $u_{\varphi(n)} \sim v_{\varphi(n)}$.

Remarque

R12 –
$$n \sim v_n \iff u_n - v_n \to 0$$

- R14 A On n'ajoute pas les équivalents.
- R 15 A Si on trouve une suite équivalente à 0, on s'est trompé! (En général, on a ajouté/soustrait des équivalents...)

Cela n'a pas de sens avec la définition du programme, et même avec la généralisation, cela voudrait dire qu'on peut écrire à partir d'un certain rang $u_n = 0 \times w_n = 0$ donc que la suite est nulle à partir d'un certain rang

En particulier, si $u_n \to 0$, on ne peut pas donner facilement un équivalent en général.

R 16 - / ↑ On ne compose pas des équivalents par la gauche avec des fonctions, même continues.

La propriété suivante n'est pas officiellement au programme mais à savoir retrouver :

- \blacksquare $e^{u_n} \sim e^{v_n} \iff u_n v_n \to 0$
- Si $u_n \sim v_n$ avec pour tout n, $u_n > 0$ et $v_n > 0$, à partir d'un certain rang $v_n \neq 1$ et si $v_n \to \ell \in \mathbb{R}^+ \cup \{+\infty\}$ avec $\ell \neq 1$, alors $\ln u_n \sim \ln v_n$.

Exercice 2 : Intégrales de Wallis : Très classique!

Détermination d'un équivalent de l'intégrale de Wallis

$$I_n = \int_0^{\pi/2} \sin^n t \, \mathrm{d}t$$

- Relation de récurrence,
- \blacksquare Expression de I_n
- Décroissance,
- $\quad \blacksquare \quad I_n \sim I_{n-1}\,,$
- \blacksquare nI_nI_{n-1} constant,
- \blacksquare Équivalent de I_n .

3 Équivalents usuels

Propriété 17 : Formule de Stirling

$$n! \sim \sqrt{2\pi n} n^n e^{-n} = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Démonstration

Admis provisoirement. Les séries permettent de montrer que $n! \sim K\sqrt{n} \left(\frac{n}{e}\right)^n$ et les intégrales de Wallis permettent de voir que $K = \sqrt{2\pi}$.

Exercice 3

Équivalent de
$$u_n = \binom{2n}{n} = \frac{(2n)!}{n!^2} \sim \frac{4^n}{\sqrt{\pi n}}.$$

Propriété 18 : Équivalents usuels

Soit $\alpha \in \mathbb{R}^*$ fixé et $h_n \to 0$.

- \blacksquare $\sin h_n \sim h_n$
- $tan h_n \sim h_n$
- $\bullet \quad \cos h_n 1 \sim -\frac{h_n^2}{2}$
- $\bullet e^{h_n} 1 \sim h_n$

 $(1+h_n)^{\alpha} - 1 \sim \alpha h_n$

- Arctan $h_n \sim h_n$
- Arcsin $h_n \sim h_n$
- $\bullet \, \operatorname{sh} h_n \sim h_n$
- $\operatorname{th} h_n \sim h_n$

Démonstration

Conséquences de la propriété précédente. $\cos x - 1 = -2\sin^2\frac{x}{2}$.

Remarque

R17 – Lorsque l'on est au voisinage de a, on se ramène en général au voisinage de a en posant a est fini et a est infini.

Exercice 4

Limite de $u_n = n \left(\left(1 - \sin \frac{1}{n^2} \right)^n - 1 \right)$.

4

Exemples de développements asymptotiques

Définition 8 : Développement asymptotique

On appelle **développement asymptotique** de $(u_n)_n$ toute expression de la forme

$$u_n = v_n^{(1)} + v_n^{(2)} + \dots + v_n^{(r)} + o(v_n^{(r)})$$

où $v^{(1)},\dots,v^{(r)}$ sont des suites telles que $v_n^{(1)}\gg v_n^{(2)}\gg \dots\gg v_n^{(r)}$, c'est-à-dire telles que $\forall\,k\in\llbracket 1,r-1\rrbracket,\ v_n^{(k+1)}=\mathrm{o}\left(v_n^{(k)}\right)$.

On dit que le développement asymptotique est à la précision $v_n^{(r)}$.

Remaraue

- **R18** On a toujours que $u_n v_n^{(1)} \dots v_n^{(r)} \sim v_n^{(k+1)}$. C'est un des moyen de former un développement asymptotique : par la recherche d'équivalents successifs.
- R 19 On peut adapter la définition précédente pour des fonctions au voisinage d'un point : c'est une généralisation du développement limité.

Méthode 3 : Calcul de développement asymptotique

Chercher un développement asymptotique d'une suite est souvent délicat. On peut par exemple essayer de :

- 1. reconnaître un développement limité « déguisé »;
- 2. chercher un équivalent $u_n \sim v_n$ qui donne $u_n = v_n + o(v_n)$, puis un équivalent de la différence $u_n v_n \sim w_n$ qui donne $u_n = v_n + w_n + o(w_n)$ et ainsi de suite;
- réinjecter le développement partiel dans une expression du terme général de la suite pour obtenir le terme suivant.

Exercice 5

Développement asymptotique en $+\infty$ de $f: n \mapsto e^{\sqrt{n^2+2n+4}}$ à la précision $\frac{e^n}{n}$.

$$e^{\sqrt{n^2+2n+4}} = e \cdot e^n + \frac{3e}{2} \cdot \frac{e^n}{n} + o\left(\frac{e^n}{n}\right)$$

Exercice 6

Développement asymptotique en $+\infty$ de $f: x \mapsto \ln(\operatorname{ch} x)$ à la précision e^{-4x} . Asymptote?

$$\ln(\operatorname{ch} x) = x - \ln 2 + e^{-2x} - \frac{1}{2}e^{-4x} + o\left(e^{-4x}\right)$$

 $y = x - \ln 2$ asymptote et la courbe est au-dessus.

Exercice 7

Développement asymptotique à trois termes de $x^{1+\frac{1}{x}}$ en $+\infty$. Asymptote?

$$x^{1+\frac{1}{x}} = xe^{\frac{\ln x}{x}} = x\left(1 + \frac{\ln x}{x} + \frac{\ln^2 x}{2x^2} + o\left(\frac{\ln^2 x}{x^2}\right)\right) = x + \ln x + \frac{\ln^2 x}{2x} + o\left(\frac{\ln^2 x}{x}\right)$$

avec $\frac{\ln^2 x}{2x} + o\left(\frac{\ln^2 x}{x}\right) \xrightarrow[x \to +\infty]{} 0$ donc $y = x + \ln x$ est asymptote et la courbe est au-dessus.

Exercice 8

On s'intéresse à u_n unique zéro de $f_n(x) = 1 + x + \frac{e^x}{n}$.

- 1. Vérifier que la suite (u_n) est bien définie, majorée par -1 et croissante.
- 2. Déterminer la limite de (u_n) .
- 3. Déterminer un développement asymptotique à 3 termes de (u_n) .

Suites extraites, valeurs d'adhérence

Définition 9 : Suite extraite

Soit $u \in \mathbb{K}^{\mathbb{N}}$. On appelle **suite extraite** ou **sous-suite** de u toute suite $v \in \mathbb{K}^{\mathbb{N}}$ telle qu'il existe $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $\forall n \in \mathbb{N}, \ v_n = u_{\varphi(n)}$. φ est appelée **extractrice**.

Lemme 1

Si φ est une extractrice, alors $\forall n \in \mathbb{N}, \ \varphi(n) \geqslant n$.

Propriété 19

Si $u \rightarrow \ell$, toute suite extraite de u converge vers ℓ .

Définition 10 : Valeur d'adhérence

On appelle **valeur d'adhérence** de $u \in \mathbb{K}^{\mathbb{N}}$ toute limite (dans \mathbb{K}) de suite extraite de u.

Exemple

E7 – Valeurs d'adhérence de $(-1)^n$.

Propriété 20

Une suite convergente a une unique valeur d'adhérence.

Remarque

R20 - Réciproque fausse.

Exemple

E8 – $u_n = n$ si n est pair et 0 sinon.

Corollaire 3

Si une suite a plusieurs valeurs d'adhérence, elle diverge.

Propriété 21

Si (u_{2n}) et (u_{2n+1}) convergent vers une même limite, alors u converge vers cette limite.

Théorème 4 : de Bolzano-Weierstraß dans $\mathbb R$ ou $\mathbb C$

Toute suite réelle ou complexe bornée a au moins une valeur d'adhérence.

Exercice 9

CCINP 1 et 43.